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On prediction and chaos in
stochastic systemsf

By QIWEI YAO AND HOWELL TONG

Institute of Mathematics and Statistics, University of Kent,
Canterbury, Kent CT2 7NF, U.K.

> We propose a new measure of sensitivity to initial conditions within a stochastic
<
environment and explore its connection with nonlinear prediction and statistical
>
@) = estimation. We use modern statistical developments to construct and illustrate
= pointwise predictors and predictive intervals/distributions.
!
= Q)
L O
= w

1. Introduction

A purely deterministic system rarely exists in reality because stochastic noise
is ubiquitous. Accordingly, it is more pertinent to replace the dynamics by the
transition probabilities from states to states. A convenient framework for this
stochastic system is the Markov chain over a general state space and nonlinear
autoregressive models emerge naturally as a realization of this framework for the
study of noisy chaos (cf. Chan & Tong 1994). Within this considerably enlarged
stochastic framework, a new notion of sensitivity to initial conditions has to be
developed.

Point predictions are only the first step in any serious study of the subject. To
complete the picture, we need to estimate the interval predictors and the predic-
tive distribution from the observed series and, if possible, to provide indicators of
their sensitivity to initial conditions. The nonlinear prediction has three distinc-
tive features: (i) the dependence of the current position in the state space; (ii) the
sensitivity to the current state; and (iii) the non-monotonicity of the accuracy in
multi-step prediction (cf. Yao & Tong 1994).
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T 2. Stochastic dynamic system
~d
B |
2 (a) Noisy chaos
>~ > Just as in a deterministic system, there has been no generally accepted defini-
@) = tion of chaos in a stochastic system, although the term noisy chaos has appeared
e E in the literature. By a stochastic chaotic system is sometimes meant a system
= O with a (deterministically) chaotic skeleton. However, this approach is not always
O appropriate because the dynamic noise will, by permeating through the system
=w dynamics, interact with the system signal throughout the time evolution. An ex-
=) + This paper was produced from the authors’ disk by using the TEX typesetting system.
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358 Q. Yao and H. Tong

treme case is that if the additive noise tends to be overwhelming, the system
would behave like a noise process no matter what the skeleton is.
A discrete-time stochastic dynamical system can be described by the equation

Xt = F(Xt——la et), (2.1)

for t > 1, where X, denotes a state vector in R¢, I is a real vector-valued function,
and {e;} is a noise process which satisfies the equality E(e;|Xo,...,X;—1) =0.If
the noise is additive, (2.1) can be written (by an abuse of notation) as follows

X, = F(X,_)) + e (2.2)

It is widely accepted that the sensitive dependence on initial conditions is a
typical feature of a deterministic chaotic system, and this can be characteristically
described in terms of the well-known Lyapunov exponents (see Eckmann & Ruelle
1985). We do not attempt to give a rigorous mathematical definition of chaos for
a stochastic system. Instead, as a working definition, we say that a stochastic
dynamic system is chaotic if the (conditional) distribution of the state variable
of the system is sensitive to its initial condition. Superficially, it looks similar to
the deterministic case. However, in a stochastic system, we would expect that
the conditional distribution of X,, given X, = x can, under certain conditions,
depend sensitively on z for some small or moderate rather than large m because of
the accumulation of noise through the time evolution. It would seem unlikely that
after a long time, the stochastic system with substantial noise still has a strong
memory of its initial conditions. This suggests that asymptotics are unlikely to
yield a practically useful characteristic exponent.

One way to manifest the sensitivity of the conditional distribution is to use the
Kullback-Leibler—type information. To simplify our discussion, we suppose the
system variables are bounded. Let g,,(y|z) denote the conditional density of X,,
given Xy = z, which is assumed smooth enough in x. For nearby initial points z,
x4+ 6 € R, after time m > 1, the divergence of the conditional distributions of
X, is defined as

Ko (x;6) = /{gm(ylfv +6) = gm(ylz)}og{gm(ylz + 6)/gm(ylz)} dy.  (2.3)

For small ¢, K,,(z;6) has the approximation
Ko (z;6) = 8" L, (x)6 + o([|6]]%), (2.4)
where
In(@) = [ m(yl2)i (v12) /9 (v1) dy, (25)

gm(y|z) denotes dg,, (y|z)/dz, and ¢ (y|z) denotes its transpose (cf. §2.6 of Kull-
back 1967). If we treat the initial value = as a parameter vector of the distribu-
tion, I,,(z) is the Fisher information on z contained in X,,. Roughly speaking,
the more information X,, brings, the more sensitively the distribution depends
on the initial condition. Fan et al. (1993) has given another measure of sensitivity
in the form of an L, norm.

It is also interesting to look at the divergence in some summarizing charac-
teristics, for example the (conditional) means. Among other things, Yao & Tong
(1994) have considered the following case. Let Y; denote the first component of

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 1. The scatter plots of Y;41 against Y; of model (a) ¥; = 0.230Y;-1(16 — Yi_1) + 0.4¢;
(b) Y; = 0.222Y;_1(16 — Y;_1) + 0.4¢;, where {e;} is a sequence of 11D standard normal random
variables. Note that the skeleton of model (a) is chaotic while that of model (b) is a limit cycle
with period 8.

X;. It follows from (2.2) that
YV, = f(Xi-1) + e,

where f(-), and ¢, denote respectively the first component of F'(-) and the first
component of e,. For m > 1, and z € R?, let f,,(z) = E(Y,,|Xo = x). Obviously,
fi(z) = f(z). Then we have

fu(@ +6) = fnl@) = 6 (@) + oIl 1), (2.6)

where () = df,.(z)/dz. We call \,,(.) the m-step Lyapunov-like index, or
simply the m-LI. When d = 1,

)\m(:c):E{ﬁ% (Xk_1)|X0:x}=E{ﬁ Al(Xk#1)|Xﬂ:x}. (2.7)

k=1 k=1

We will see in § 3 its role in the pointwise prediction.

We remark that the ‘clear’ cut-off between deterministic chaotic systems and
deterministic non-chaotic systems is masked by the presence of stochastic noise.
Figure 1 illustrates the situation.

(b) Noise amplification

We measure the amplification of noise by comparing the conditional variance
of X, (given the initial conditions X,) with the variance of e,. Deissler & Farmer
(1991) studied the noise amplification in a different way. They considered the
distance between the state variables in a (known) purely deterministic system
and their counterparts in the system perturbed by additive system noise. This
approach seems inappropriate in the statistical context, because the underlying
deterministic skeleton is now typically unknown.

Phil. Trans. R. Soc. Lond. A (1994)
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360 Q. Yao and H. Tong
As an illustration, let us consider a one-dimensional system with additive noise:
Y;:f()/;—l)+6ta t>17

where {¢;,,t > 1} is a noise process with mean value 0 and variance oj and
Y, = = € R. Suppose that ¢, is distributed on a bounded set which is independent
of t. Then for o2 (z) = Var(Y,,|Ys = z), it may be proved that as oo — 0,

Ufn($) = 0(2) tim(z) (1 + 0(1)), (2.8)

where
o) =1+ Y { 11 A1) } 29)

(Yao & Tong 1994). Thus, if |f(z)| > 1 for a large range of values of z, ju,,(x)
can be very large for moderate (and even small) m. The rapid increase of o2 (z)
with respect to m is a manifestation of noise amplification. On the other hand,
(2.12) implies that

pmi1 (@) = 1ot (@) {17 ()]}
Thus, pmi1(z) < pm(z) if {10 (@)]}2 < 1= 1/pm(x). By (2.11), it is possible

that for such z and m, o2, () < o2 (x). This suggests that from the same initial

value, the error of an (m + 1)-step ahead prediction could be smaller than that
of an m-step ahead prediction in some cases (cf. Tong 1990; Yao & Tong 1994).

3. Nonlinear prediction

Suppose that {Y;, —co < t < 0o} is a one-dimensional strictly stationary time
series such that given {Y;,7 < t}, the conditional distribution of Y;,; depends
on {Y;,i < t} only through X,, where X, = (Y;,Y,_1,...,Y;_441)". Given the
observations {Y;, —d 4+ 1 < t < n}, wé shall predict the random variables Y, ;,,
for m = 1,2,.... In fact, the time series model can be considered a special case
of a stochastic dynamical system. For, let f(z) = E(Y;|Xo = z). Then Y; can be
expressed as

Y, = f(Xio1) + e, (3.1)

where ¢, = Y, — f(X,_1). Define F(X, 1) = (f(Xi1),Yie1, .-, Yicay1) T 60 =
(€,0,...,0)T. Then equation (2.2) holds. Henceforth, the time series model is
said to be chaotic if the corresponding stochastic dynamic system is chaotic.

(a) Point predictors

To study the m-step prediction, we define f,,(z) = E(Y,,| X, = z), for z € R?
and m > 1. It is easy to see that the (theoretical) least squares predictor of Y, .,

based on {Y;,t < n} is f,,(X,). In practice, we use fm(Xn) as the predictor,
where f,,(.) is a reasonable estimator for f,,(.). In fact, it can be proved that if
E{[fm(z) = fm(2)]?| X} — 0 as.,

lim E{[Yoim—f(2))*| X0 = 246} = 07, (2 +6) {6 A (2)} + Bny 5., (3.2)

Phil. Trans. R. Soc. Lond. A (1994)
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On prediction and chaos in stochastic systems 361

where R, = of|| 6 ||?) as || 6 ||— 0, A.(z) = df,.(x)/dz" is the m-LI, and
o2 (z) = Var(¥,,| Xo = z) (Yao & Tong 1994).

It can be seen from (3.2) that the mean-squared error of the predictor f,, at
the initial value z, which has a small shift from the true but unobservable value
X, =z + 6, can be decomposed into two parts: (a) the conditional variance; (b)

the error due to the small shift at the initial value which is related to the m-LI.
When 6 =0, i.e. X,, is fully known, (3.2) becomes

nhj{.lo E{[Yoim — fm(x)]2 | Xn=2}= o-fn(m) a.s.,

which shows that the accuracy of the prediction in a nonlinear (but not necessarily
chaotic) model depends on z. When the measurement error § is small but not
zero, such as rounding errors in measurement, etc., usually the right hand side
of (3.2) is dominated by the conditional variance o2 (z + 8) = o2, (z) + O(]| 6 ||).
However, for a chaotic system, the m-LI A,,(z) can be very large for some values
of z (cf. (2.6)). In this sense, we say that the m-step prediction is sensitive to the
initial values when the model is chaotic.

In (3.1), the noise term ¢, is not necessarily homogeneous as indicated in the
second expression in (2.7). However, if it is, 0?(z) = o? is a constant. In this
case, the variation of the asymptotic mean-squared prediction error is dictated
by Ai(z).

Yao & Tong (1994) have discussed the locally linear kernel estimators for f,,(.),
Am(.), and o2 (.).

(b) Interval predictors
Of course, an interval predictor is much more relevant than a point predictor,
especially in the case of a relatively large noise. A natural way to construct
a predictive interval is to estimate the conditional percentiles of Y,, given X,.
Specifically, for o € [0, 1], the 100ath conditional percentile of Y,, given X, =
x € R? is defined as

5‘1»7”(1") = arg |I1|'1<11'1 E{Ra(Ym - a)|XO = .’E},

where the loss function
_ (= a)lyl y <0,

It is well known that the relation o = P{Y,, < &, .(z)|Xo = z} holds. There-
fore, given {Y;,t < n}, Y, 1, will be in the interval [£a/2,m(X0), &1—a/2,m(X0)]
with probability 1 — a. In fact, the conditional distribution of Y;,,,, given X,, is
determined by the values of &, ,,(X,) for 0 < a < 1.

Similar to §3 b, we use the estimators &, ,,,(z) = @ and éa,m(a:) = b, by setting

(a,b) as the minimizer (with respect to a and b respectively) of the function.

Z Ro{Yium —a =8 (X, — )} (Z55)), (33)

where K (.) is a probability density function on R?, and h = h(n) is a bandwidth.
Unfortunately, (3.3) does not have an explicit solution for (a,b). Moreover, since

Phil. Trans. R. Soc. Lond. A (1994)
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R, (y) is not differentiable at y = 0, either a smooth approximation of R,(.) or
more complicated software development seems necessary in order to compute the
estimates numerically (cf. Bloomfield & Steiger 1983).
An alternative approach is to change the loss function (3.3) to a quadratic
function
_ (1 - O.))y2 Yy < 07
Qulv) = {wy2 y >0,

for w € [0, 1], the 100 wth conditional expectile of Y;, is defined as
Tw,m(x) = arg ‘II‘lin F{Qu.(Ym —a)|Xo = 1’}
a|<oo

(cf. Neway & Powell 1987). Note that this reduces to E(Y|X = z) when w = 1.
Now, 7, ,»(x) can also be used to construct a predictive interval: given {Y;,t <
n}, predict Y, to lie in the interval [7,,/2.m(X0), Ti—w/2,m(Xn)] with 100(1 — w)%
‘coverage’.
To estimate 7, ,,(.), we minimize in the usual way the function

:Z:LQw{K+m —a—-b'(X,—2)} K (Xth_ :c) ,

and define the estimators 7, ,, () = @, Ty.m(z) = b.

It is easy to construct a fast iterative algorithm to compute {7, (), 7u.m(2)}
(cf. Yao & Tong 1992). Although a predictive interval based on conditional ex-
pectiles is convenient to compute, it does not have the conventional probability
interpretation in general. However, [7,/2.m(X,), T1—w/2,m(X,)] could be consid-
ered a reasonable interval predictor extended from the conditional expectation.
Yao & Tong (1992) have pointed out that, in a special case, the above asymmetric
least squares approach can be used to estimate conditional percentiles directly.

Theorem 3.1. Under conditions (A 1)-(A6) listed in the appendix,
(i) for x € {p(z) > 0},

v nhd{éa,m(m) - ga,m(x) - h2lul} i’ N(0,0’f),

VIhHE, () = o m(@) — hpa} 5 N (0, ),

where

= Lo tr{€am(@)} + 0(1), s /uuTéa,m(x)uK(u) du + o(1),

~ 53
20§

I a) [ K?(u)du _o(l— o) [uu"K?(u)du
p(x)[gm(éha,m(m)lm)]?’ ’ P(@)03[gm (Ea,m ()|)]? ’
(ii) for x € {p(z) > 0},

Vrht {7, m(x) — Tym(z) — h2u3} 4, N(O,ag),
Vnhdt? {7, () = Fom() — hps} 5 N(0, X4),

where
1
20¢ .

ps = 30 tr{Fum (@)} 0(1), s = 5y [ wuT g (2)uk () du+o(1),

Phil. Trans. R. Soc. Lond. A (1994)
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1 .
2 2
= Y — =
7= / K2(u) du Var{Qu (Yo — 7o (2))| Xo = 2},
1 .

Y= TK? — =
4 p(x)0§72/uu K*(u) du Var{Q, (Y, — 7o.m(2))| X0 = z},

and v = 2wP{Y,, < 7y m(2)|Xo = 2} + 2(1 — w)P{Y,, > 7. ()| Xo = z}.

Yao & Tong (1992) have proved (ii) of Theorem 3.1 in the special case d = 1.
The technically more involved multidimensional case contains no fundamentally
new ideas for the current version. Theorem 3.1(i) can be proved in a similar way
(also see Fan et al. 1992).

Theorem 3.1 gives the asymptotic normality of the the estimators for the condi-
tional percentiles, expectiles and their derivatives. Notice that 71/, (z) = fm (z)

and 7, s2m(T) = Am(2). Therefore, Theorem 3.1(ii) also includes the asymptotic
normality of the point estimators as a special case. As shown in the theorem, the
‘asymptotic bias’ is of the order of h? for the estimators émm and 7, ., and order
of h for the estimators of their derivatives; they come from the error in the local
approximation of the underlying curve by a linear function. A locally quadratic
fit will improve the estimation for the derivatives (cf. Fan et al. 1993). However,
it creates further complications in practical implementation.

We use the following two kinds of intervals to predict Y,,,, from {Y;,t < n},
noting the remarks before Theorem 3.1,

[éa/2,m(Xn>7 él—a/2,m(Xn)]7 [%w/Q,m(Xn), 721—w/2,m(Xn)]-

We can monitor the prediction error caused by the stochastic noise by the width
of the interval. To monitor the initial-value sensitivity of the predictive intervals
by the estimates of the derivatives of the conditional percentiles or expectiles. The
estimates presented in the next subsection also offer measures for the sensitivity.

(¢) Estimates of I,,(x)

Fan et al. (1993) has discussed the estimation of I,,(z). For simplicity, let us
discuss the first order case, i.e. d = 1, noting that the generalization to the higher
order cases is straightforward. Notice that

In(z) 24/{9____%@/@)} dy.

We first construct the estimators for /g,,(y|z) and its derivative. Let g,,(z,v)

denote /g, (y|x).

For given bandwidths h; and hs, let
Cm(Xuyl) = #{(Xh}/t)»]- < t < n: “Xt - Xz” < hl a'nd |Y—t+m - }/;+m| < h2}7

Con(Xy) = #{X,1 <t <n || Xy — X5l <
for 1 < i < n. Then

70 = \/Co( X0, Y) [{Con(X.) ho}
is a natural estimate of g,,(z,y) at (z,y) = (X, Y:). We estimate g,,(z,y) and

Phil. Trans. R. Soc. Lond. A (1994)
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16 r
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Figure 2. The scatter plots of Y;3 against Y;.

its derivative with respect to x, denoted by ¢(z,y), by using ¢,,(z,y) = @ and
4 (z,y) = b, where (@, b) is the minimizer of the function

n—m - _ Y, —
S {Z—a-b"(X, — 2)P’K (&J t y)
t=1 ha ha

K being a probability density function on R*"'. Consequently, we estimate I,,, ()
by

(@) =4 [ (o)} dy.

For further details, we refer to Fan et al. (1993).

4. Examples

We have shown, via asymptotics, that the performance of nonlinear prediction
is influenced by the initial values. In this section, we use simulated and real data-
sets to illustrate the finite-sample behaviour. The estimators used in pointwise
prediction are constructed by using locally linear regression method (cf. Yao &
Tong 1994). We use gaussian kernel in our estimation. Other examples may be
found in Yao & Tong (1994).

(a) Logistic map
We begin with the simple one-dimensional model,

Y, = 0.230Y,_, (16 — Y,_;) + 0.4e,,

where {¢,} is a sequence of independent random variables with the standard nor-
mal distribution truncated in the interval [-12,12]. A sample of 1200 is generated.
We consider the three-step-ahead prediction only, i.e. m = 3, to save space.

The scatter plots of Y, 3 against Y; are displayed in figure 2, which show obvious
change of the variability of Y;, 3 with respect to Y;. For example, the variability of

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 3 Figure 4
16 | 4
12 t .‘ o 3
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Figure 3. The plots of the 200 three-step predicted values and the corresponding absolute pre-
diction errors against their initial values, as well as the estimated conditional variance ag(x)
(h = 0.2). Diamonds, predicted values; impulses, absolute prediction errors; solid curve, &3 (z).

Figure 4. The plots of the 200 three-step predicted values and the correspondmg absolute pre-
diction errors against their rounded initial values, and the estimated function |As(z)|(h = 0.2).
Diamonds, absolute prediction errors; solid curve, |Asz(z)|.

Y., is at its largest when Y; ~ 8, and at its smallest when Y; ~ 5.6 and 10.4. We
use the first 1000 observations to estimate the unknown functions. The predicted
values for the last 200 observations together with their absolute prediction errors
and estimated conditional variance 62(z) are plotted in figure 3. Since rounding
errors in the calculation are below 107¢, the accuracy is dominated by the con-
ditional variance. Figure 3 shows that the three-step-ahead prediction is at its
worst when the initial value is around 8, and at its best when the initial value is
near 5.6 or 10.4, which is in agreement with the observation from figure 2.

Suppose that we disturb the initial value & by rounding it to the nearest value
from among [z],[z] + 0.5, and [z] + 1, where [z] denotes the integer part of .
Hence, || < 0.5. Figure 4 shows that for one-step-ahead prediction, the abso-
lute prediction error increases as |A(z)| increases, which is consistent with the
asymptotic conclusion presented in (3.2).

Figure 5 presents 200 real values and the predictive intervals constructed by
the estimated conditional percentiles {a 3(.) obtained by the multidimensional
downhill simplex method (cf. §10.5 of Press et al. 1992). The width of the in-
terval varies with respect to the initial value. For example, the width attains its
maximum around z = 8, and its minimum about z = 5.6 and 10.4. Notice that
the presented intervals contain the predicted values with realtive frequency 0.9 as
they are supposed to do. The predictive intervals constructed by the estimated
conditional expectile 7, 3(.) are displayed in figure 6.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 5 Figure 6
16 }
(]
12t
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Figure 5. The predictive interval [£0.05,3(2), 0.95,3(z)] (b = 0.42), and 200 real values. Solid
curve, §0.95,3(x); dotted curve, &.05,3(z); diamonds, real values.

Figure 6. The predictive interval [79.05,3(z), 70.95,3(z)] (h = 0.2), and 200 real values. Solid curve,
70.95,3(); dotted curve, 7o.05,3(); diamonds, real values.
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To monitor the sensitivity of the predictive interval to the initial value, we plot
the three sensitive measures for m = 1,2 in figure 7. The profiles of the Fisher
information,

Ln(@), o5, (@) + Eoosn (@)1, {(Fosm (@) + Foss.m(®)2}2,

are generally quite similar.

(b) Lynz data

We present the results of pointwise prediction for m = 1 and 2 for the Canadian
lynx data for 1821-1934 (listed in Tong 1990) in table 1. Here, we choose d = 4.
We use the data for 1821-1924 (i.e. n = 104) to estimate f,,(-), \n(*), etc., and
the last 10 data to check the predicted values. The bandwidth is chosen as 0.55
for one-step prediction and 0.50 for two-step prediction. The column under 62 is
not complete due to the omission of a negative estimate. Roughly speaking, the
prediction is reasonably good though there is evidence of under-prediction. For
the case of one-step ahead, the prediction errors are less than 0.1 when || A;(z) ||
is less than 1. They tend to be larger when || A;(z) || is ‘large’. Occasionally

(e.g. in 1934) the error is small even though || A,(z) || is ‘large’. For the two-step
prediction, 62 and || A, || provide some indication of the prediction reliability.
Typically, in 1927 the values of both 62 and || Ao || are large, and the error of the
prediction is also large.

We also perform the interval prediction using conditional percentiles, namely
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Figure 7. The estimated Fisher information I, (z), and the derivatives of conditional percentiles
and expectiles. (a) m = 1 (hy = 0.61,hy = 0.24 for I1(x)); (b) m = 2 (hy = 0.57,ha = 0.22
for I5(x)). Solid curve, I,,(z); dashed curve, {(éolosym(glc))2 + (5.0‘95’,”(30))2}1/2; dotted curve,

{(7:'0.05,171(-'5))2 + (;o.gs,m(x))2}1/2~

Table 1. Point prediction of the Canadian lynz data (on natural log scale)

year true value error (fl) | A1 || error (fg) 52 | Mo |
1925 8.18 —0.05 0.58 —-0.13 0.08 0.77
1926 7.98 —0.23 2.67 —0.39 0.69 1.04
1927 7.34 —0.16 2.49 —0.60 1.99 4.21
1928 6.27 0.22 3.12 0.13 1.60 2.30
1029 6.18 —0.43 1.94 —0.45 0.61 3.42
1930 6.50 —0.28 2.34 —0.60 — 3.38
1931 6.91 —-0.19 1.23 —0.46 0.37 2.35
1932 7.37 0.02 0.70 —0.21 1.17 1.43
1933 7.88 —0.26 1.21 —0.22 0.08 0.59
1934 8.13 —-0.07 2.28 —0.22 0.51 2.02

[€0.05,m» £0.95,m). The results are reported in table 2. The bandwidth is chosen as
0.57 for one-step prediction and 0.51 for two-step prediction. In the case m =1,
two predictive intervals (out of the ten) do not cover the true values. In the
case m = 2, although all the intervals contain the corresponding true values, the
widths of the intervals are considerably larger than those for the case m =1

(except for the year 1925).

This research was partly supported by the Science and Engineering Research Council (U.K.).

Appendix A. The regularity conditions

To discuss the asymptotic properties of the estimators, we need the following

assumptions.
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Table 2. Interval prediction of the Canadian lynz data (on natural log scale)

predictive interval

7 ~

year true value m=1 m=2

1925 8.18 7.88, 8.67 7.84, 8.36
1926 7.98 7.35, 8.27 6.89, 8.47
1927 7.34 6.48, 7.88 5.92, 7.58
1928 6.27 5.68, 8.09 4.77, 8.47
1929 6.18 4.97, 6.35 4.76, 7.29
1930 6.50 5.75, 6.43 5.31, 6.53
1931 6.91 5.99, 6.97 6.28, 7.41
1932 7.37 7.04, 7.63 6.65, 7.87
1933 7.88 7.07, 7.83 7.31, 8.07
1934 8.13 7.55, 8.40 7.22, 8.32

(A1) The joint density of distinct elements of (X;,Y7, X, Y:) is bound by a
constant independent of k.

(A2) X, has the probability density function p, and |p(z) —p(y)| < C ||z —y |
for any z,y € R%.

(A 3) The precess {Y;} is p-mixing, i.e.

p; = sup Corr(U,V) -0, as j — oo,
velm?  ,velm?

—00?

where Im? is the o-field generated by {V},k =1,..., 7}. Further, we assume that

k1 P < 00,
(A4) K(-) is a continuous density function with a bounded support in R¢, and

/xK(w) dz =0, /meK(:L‘) dz = o2 1,
where I; denotes the d x d identity matrix.
(A5) The bandwidth A — 0, nh?*¢ — oo, and (logn)/(nh?) — 0.

(A 6) For any compact subset B € R¢, there exists a constant ¢ such that for
any z, y € B,

< e =yll,

/zzgm(zlx)dz——/z2gm(z\y) dz

where g,,(y|z) denotes the conditional density of Y,, given Xj.

References

Bloomfield, P. & Steiger, W. L. 1983 Least absolute deviations. Boston: Birkh&user.
Chan, K. S. & Tong, H. 1994 A note on noisy chaos. JI R. statist. Soc. B 56, 301-311.

Deissler, R. J. & Farmer, J. D. 1989 Deterministic noise amplifiers. Tech. Rep. LA-UR-89-4236,
Los Alamos Laboratory, U.S.A.

Eckmann, J. P. & Ruelle, D. 1985 Ergodic theory of chaos and strange attractors. Rev. mod.
Phys. 57, 617-656.

Fan, J. 1992 Design-adaptive nonparametric regression. J. Am. statist. Ass. 87, 998-1004.
Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

4

OF

Downloaded from rsta.royalsocietypublishing.org

On prediction and chaos in stochastic systems 369

Fan, J., Hu, T. C. & Truong, Y. K. 1992 Robust nonparametric function estimation. Tech. Rep.
035-92, Mathematics Science Research Institute, Berkeley.

Fan, J., Gasser, T., Gijbels, I., Brockmann, M. & Engel, J. 1993 Local polynomial fitting: a
standard for nonparametric regression. Tech. Rep., University of North Carolina.

Fan, J., Yao, Q. & Tong, H. 1993 Estimating measures of sensitivity of initial values to nonlinear
stochastic systems with chaos. Tech. Rep., University of Kent.

Kullback, S. 1967 Information theory and statistics. New York: Dover.

Neway, W. K. & Powell, J. K. 1987 Asymmetric least squares estimation and testing. Econo-
metrica 55, 819-847.

Press, W. H., Flannery, B. P., Tenkolsky, S. A. & Vetterling, W. T. 1992 Numerical recipes.
Cambridge University Press.

Tong, H. 1990 Non-linear time series: a dynamical system approach. Oxford University Press.

Yao, Q. & Tong, H. 1992 Asymmetric least squares regression estimation: a nonparametric
approach. Tech. Rep., University of Kent.

Yao, Q. & Tong, H. 1994 Quantifying the influence of initial values on nonlinear prediction. Ji
R. statist. Soc. B56. (In the press.)

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

